Ingenol 3-angelate induces dual modes of cell death and differentially regulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in melanoma cells.
نویسندگان
چکیده
Ingenol 3-angelate (PEP005), one of the active ingredients in an extract from Euphorbia peplus, was shown in preclinical studies to have activity against human melanoma xenografts in nude mice. In the present study, we have tested its ability to induce the apoptosis of melanoma cells in vitro in the absence or presence of tumor necrosis factor-related apoptosis inducing ligand (TRAIL). The results showed that at relatively high concentrations (100 microg/mL), PEP005 killed melanoma cells mainly by induction of necrosis. In 20% of cell lines, evidence of apoptosis was observed. Apoptosis was caspase-dependent and associated with changes in mitochondrial membrane potential that were not inhibitable by overexpression of Bcl-2 or inhibition of caspases but were blocked by inhibition of protein kinase C (PKC). Low concentrations (1 or 10 microg/mL) of PEP005 either increased or decreased TRAIL-induced apoptosis in a cell line-dependent manner. These changes in TRAIL-induced apoptosis seemed to be due to activation of PKC and varying levels of PKC isoenzymes in different melanoma cell lines. PEP005-mediated enhancement of apoptosis seemed to be associated with low expression of the PKCepsilon isoform. These results indicate that PEP005 may enhance or inhibit sensitivity of melanoma to treatments associated with TRAIL-induced apoptosis depending on the PKC isoform content of melanoma cells.
منابع مشابه
Role of Caspases and Reactive Oxygen Species in Rose Bengal-Induced Toxicity in Melanoma Cells
Objective We have previously shown that Rose Bengal (RB) alone, not as a photosensitiser, could induce apoptotic- and non-apoptotic cell death in different melanoma cell lines. To clarify RB-induced toxicity mechanisms, role of caspases and reactive oxygen specious (ROS) were studied in melanoma cells. Material and Methods Human melanoma cell lines, Me 4405 and Sk-Mel-28 were cultured in DM...
متن کاملPeriplasmic Expression of TNF Related Apoptosis Inducing Ligand (TRAIL) in E.coli
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of TNF family, is an interesting ligand which selectively induces apoptosis in tumor cells and, therefore, it has been developed for cancer therapy. This ligand has been produced by various hosts such as E.coli. However, protein expression in E.coli cytoplasm leads to problems such as incorrect folding, reduction in biolo...
متن کاملPeriplasmic Expression of TNF Related Apoptosis Inducing Ligand (TRAIL) in E.coli
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of TNF family, is an interesting ligand which selectively induces apoptosis in tumor cells and, therefore, it has been developed for cancer therapy. This ligand has been produced by various hosts such as E.coli. However, protein expression in E.coli cytoplasm leads to problems such as incorrect folding, reduction in biolo...
متن کاملSequential treatment by ionizing radiation and sodium arsenite dramatically accelerates TRAIL-mediated apoptosis of human melanoma cells.
Melanoma is the most lethal form of skin cancer. There is a lack of effective treatments for individuals with advanced disease. Many melanomas exhibit high levels of radioresistance. The direct consequence of gamma-irradiation for most melanoma cells is growth arrest at the G2-M phase of cell cycle. However, radiation-induced signaling pathways may affect numerous additional targets in cancer c...
متن کاملHuman melanoma cells selected for resistance to apoptosis by prolonged exposure to tumor necrosis factor-related apoptosis-inducing ligand are more vulnerable to necrotic cell death induced by cisplatin.
PURPOSE Heterogeneous sensitivity of melanoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis may lead to outgrowth of TRAIL-resistant cells and limit successful treatment by TRAIL. The present study aims to better understand the biological characteristics of melanoma cells resistant to TRAIL-induced apoptosis. EXPERIMENTAL DESIGN We generated TRAIL-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 3 12 شماره
صفحات -
تاریخ انتشار 2004